skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Behn, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anbar, A; Weis, D (Ed.)
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Oceanic transform faults play an essential role in plate tectonics. Yet to date, there is no unifying explanation for the global trend in broad-scale transform fault topography, ranging from deep valleys to shallow topographic highs. Using three-dimensional numerical models, we find that spreading-rate dependent magmatism within the transform domain exerts a first-order control on the observed spectrum of transform fault depths. Low-rate magmatism results in deep transform valleys caused by transform-parallel tectonic stretching; intermediate-rate magmatism fully accommodates far-field stretching, but strike-slip motion induces across-transform tension, producing transform strength dependent shallow valleys; high-rate magmatism produces elevated transform zones due to local compression. Our models also address the observation that fracture zones are consistently shallower than their adjacent transform fault zones. These results suggest that plate motion change is not a necessary condition for reproducing oceanic transform topography and that oceanic transform faults are not simple conservative strike-slip plate boundaries. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Oceanic detachment faults represent an end-member form of seafloor creation, associated with relatively weak magmatism at slow-spreading mid-ocean ridges. We use 3-D numerical models to investigate the underlying mechanisms for why detachment faults predominantly form on the transform side (inside corner) of a ridge-transform intersection as opposed to the fracture zone side (outside corner). One hypothesis for this behavior is that the slipping, and hence weaker, transform fault allows for the detachment fault to form on the inside corner, and a stronger fracture zone prevents the detachment fault from forming on the outside corner. However, the results of our numerical models, which simulate different frictional strengths in the transform and fracture zone, do not support the first hypothesis. Instead, the model results, combined with evidence from rock physics experiments, suggest that shear-stress on transform fault generates excess lithospheric tension that promotes detachment faulting on the inside corner. 
    more » « less
  4. Hans Thybo (Ed.)
    The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer. 
    more » « less
  5. We will deploy 36 3-component short period (1 Hz?) sensors for one summer, May-August 2019 on the Greenland Ice sheet at about 1000m elevation. Sensors will need to be installed on poles drilled into the ice due to melt out during the summer, similar to previous projects. Ideally these would be L2s with Q330s similar to the request we put in last year, but I am less clear on the frequency range of your new GeoIce equipment, perhaps that is also appropriate. We would like to preserve the 1-4 Hz band and not use 4.5 Hz sensors if possible. Instruments would need to be shipped in spring to make the air force flights up to Greenland. They would be pulled out in August and presumably back to PASSCAL by October sometime. 
    more » « less
  6. null (Ed.)
    Abstract Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3  $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2  $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input. 
    more » « less
  7. Abstract. Viscous flow in ice is often described by the Glen flow law – anon-Newtonian, power-law relationship between stress and strain rate with astress exponent n ∼ 3. The Glen law is attributed tograin-size-insensitive dislocation creep; however, laboratory and fieldstudies demonstrate that deformation in ice can be strongly dependent ongrain size. This has led to the hypothesis that at sufficiently lowstresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studiesfind that neither dislocation creep (n ∼ 4) nor grain boundarysliding (n ∼ 1.8) have stress exponents that match the value ofn ∼ 3 in the Glen law. Thus, although the Glen law provides anapproximate description of ice flow in glaciers and ice sheets, itsfunctional form is not explained by a single deformation mechanism. Here weseek to understand the origin of the n ∼ 3 dependence of theGlen law by using the “wattmeter” to model grain size evolution in ice.The wattmeter posits that grain size is controlled by a balance between themechanical work required for grain growth and dynamic grain size reduction.Using the wattmeter, we calculate grain size evolution in two end-membercases: (1) a 1-D shear zone and (2) as a function of depth within anice sheet. Calculated grain sizes match both laboratory data and ice coreobservations for the interior of ice sheets. Finally, we show thatvariations in grain size with deformation conditions result in an effectivestress exponent intermediate between grain boundary sliding and dislocationcreep, which is consistent with a value of n = 3 ± 0.5 over the rangeof strain rates found in most natural systems. 
    more » « less
  8. Abstract Supraglacial lakes have been observed to drain within hours of each other, leading to the hypothesis that stress transmission following one drainage may be sufficient to induce hydro‐fracture‐driven drainages of other nearby lakes. However, available observations characterizing drainage‐induced stress perturbations have been insufficient to evaluate this hypothesis. Here, we use ice‐sheet surface‐displacement observations from a dense global positioning system array deployed in the Greenland Ice Sheet ablation zone to investigate elastic stress transmission between three neighboring supraglacial lake basins. We find that drainage of a central lake can place neighboring basins in either tensional or compressional stress relative to their hydro‐fracture scarp orientations, either promoting or inhibiting hydro‐fracture initiation beneath those lakes. For two lakes located within our array that drain close in time, we identify tensional surface stresses caused by ice‐sheet uplift due to basal‐cavity opening as the physical explanation for these lakes' temporally clustered hydro‐fracture‐driven drainages and frequent triggering behavior. However, lake‐drainage‐induced stresses in the up‐flowline direction remain low beyond the margins of the drained lakes. This short stress‐coupling length scale is consistent with idealized lake‐drainage scenarios for a range of lake volumes and ice‐sheet thicknesses. Thus, on elastic timescales, our observations and idealized‐model results support a stress‐transmission hypothesis for inducing hydro‐fracture‐driven drainage of lakes located within the region of basal cavity opening produced by the initial drainage, but refute this hypothesis for distal lakes. 
    more » « less
  9. Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of- magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 mm3 to 215 ± 90.2 mm3) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input. 
    more » « less